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ABSTRACT

Aim To test the hypothesis that continental drift drives diversification of
organisms through vicariance, we selected a group of primitive arachnids which
originated before the break-up of Pangaea and currently inhabits all major
landmasses with the exception of Antarctica, but lacks the ability to disperse
across oceanic barriers.

Location Major continental temperate to tropical landmasses (North America,
South America, FEurasia, Africa, Australia) and continental islands (Bioko,
Borneo, Japan, Java, New Caledonia, New Guinea, New Zealand, Sri Lanka,
Sulawesi, Sumatra).

Methods Five kb of sequence data from five gene regions for more than 100
cyphophthalmid exemplars were analysed phylogenetically using different
methods, including direct optimization under parsimony and maximum
likelihood under a broad set of analytical parameters. We also used geological
calibration points to estimate gross phylogenetic time divergences.

Results Our analyses show that all families except the Laurasian Sironidae are
monophyletic and adhere to clear biogeographical patterns. Pettalidae is restricted
to temperate Gondwana, Neogoveidae to tropical Gondwana, Stylocellidae to
Southeast Asia, and Troglosironidae to New Caledonia. Relationships between the
families inhabiting these landmasses indicate that New Caledonia is related to
tropical Gondwana instead of to the Australian portion of temperate Gondwana.
The results also concur with a Gondwanan origin of Florida, as supported by
modern geological data.

Main conclusions By studying a group of organisms with not only an ancient
origin, low vagility and restricted habitats, but also a present global distribution,
we have been able to test biogeographical hypotheses at a scale rarely attempted.
Our results strongly support the presence of a circum-Antarctic clade of formerly
temperate Gondwanan species, a clade restricted to tropical Gondwana and a
Southeast Asian clade that originated from a series of early Gondwanan terranes
that rifted off northwards from the Devonian to the Triassic and accreted to
tropical Laurasia. The relationships among the Laurasian species remain more
obscure.

Keywords
Arachnida, Arthropoda, Cyphophthalmi, Gondwana, New Caledonia, Opiliones,
Pangea, phylogeny, Southeast Asia, vicariance biogeography.

INTRODUCTION

A profound understanding of the distributions of organisms
through space and time led Charles Darwin and Alfred R.
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Wallace to present jointly the most influential biological
hypothesis ever formulated, their theory of evolution through
natural selection (Darwin & Wallace, 1858). Today, many
evolutionary biologists continue the tradition of Darwin and
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Wallace by focusing on biogeography, the scientific discipline
that studies the geographical distributions of living organisms
and the ecological and historical causes that explain them
(Nelson & Platnick, 1981; Crisci et al, 2003). Although
theoretical contributions to historical biogeography are
numerous, most empirical studies have focused exclusively
on the Southern Hemisphere (Sanmartin & Ronquist, 2004;
Giribet & Edgecombe, 2006; Van Bocxlaer et al., 2006). To
date, few conclusive empirical studies of the worldwide
historical biogeography of terrestrial organisms are available,
because the members of clades with global distributions tend
to present dispersal abilities that obscure historical biogeo-
graphical patterns (e.g. Dumont et al., 2005; Bossuyt et al,
2006). To find a group of land organisms with an ancient
global distribution, and therefore suitable for a study of
historical biogeography on a global scale, one needs to look
among the earliest colonizers of terrestrial environments.

Arachnids were among the very first groups of animals to
conquer land during the Siluro-Devonian (Shear, 1991;
Dunlop, 1997), when all current landmasses except East Asia
and Siberia formed a megacontinent that later fully assembled
as Pangaea. Harvestmen (order Opiliones) may be among the
earliest arachnids (Shultz, 1990; Wheeler & Hayashi, 1998;
Giribet ef al., 2002), with Cyphophthalmi constituting the
oldest group of harvestmen (Shultz, 1998; Giribet et al., 2002).
Their sister group is already found in the 400-million-year-old
Devonian Rhynie cherts of Scotland (Dunlop et al., 2003, 2004
(for 2003); Dunlop, 2007). Cyphophthalmi were probably
distributed throughout Pangaea, where the group underwent
an initial phase of diversification into the major lineages
known today (Giribet & Kury, 2007). Since then, their
evolutionary history has been driven by vicariance, with only
a single putative instance of trans-oceanic dispersal documen-
ted (Clouse & Giribet, 2007).

Cyphophthalmi mainly inhabit tropical to temperate rain-
forests all over the globe — with the exception of islands of
oceanic origin — including most of the so-called terrestrial
biodiversity hotspots (Myers et al, 2000) (Fig. 1). These
harvestmen are currently classified into six families (Pinto-
da-Rocha et al,, 2007), each restricted to a well-defined
biogeographical region (Giribet & Kury, 2007). Pettalidae
occurs in the former temperate Gondwana, including Austra-
lia, Madagascar, New Zealand, Southern Africa, southern
South America and Sri Lanka; Sironidae inhabits the former
Laurasia, with representatives in Europe, Japan and North
America; Neogoveidae occurs in Florida, tropical South
America and tropical West Africa, which constituted tropical
Gondwana; Stylocellidae occurs in mainland Southeast Asia as
well as the islands of Sundaland and Wallacea, including
Borneo, Java, Palawan, Sulawesi, Sumatra and the so-called
Bird’s Head in western New Guinea; and finally the two
monogeneric families Troglosironidae and Ogoveidae occur in
New Caledonia and tropical West Africa, respectively (Shear,
1980; Juberthie, 1988; Giribet, 2000; Boyer & Giribet, 2007;
Giribet & Kury, 2007). Cyphophthalmi have undergone
notable radiations in isolated areas such as the Balkans (Boyer
et al., 2005), New Zealand (Forster, 1948, 1952; Boyer &
Giribet, 2007) and Sumatra (authors’ unpublished data), and
their sensitivity to habitat degradation makes them potentially
valuable indicators of forest quality.

In order to evaluate the hypothesis that Cyphophthalmi
have diversified by vicariance as land masses have drifted away
from an ancestral megacontinent, we collected specimens of
this cryptic group of arachnids in all continents and most
major continental islands where Cyphophthalmi have been
reported (Fig. 1), with the exceptions of Madagascar, Corsica
and Sardinia. We then performed a phylogenetic analysis of
DNA sequence data derived from five molecular loci evolving

Figure 1 Distribution of the cyphophthalmid specimens treated in this study. Locality data were generated with the GIS software ARcMaP
9.1. Colours reflect current families: orange for Sironidae, green for Neogoveidae, red for Pettalidae, blue for Stylocellidae and purple
for Troglosironidae. The only landmass with Cyphophthalmi not included in our study is Madagascar; the monogeneric West African

family Ogoveidae was not included.
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at different rates using different methods and techniques and
estimated time divergences for certain key splits.

MATERIALS AND METHODS

Species sampling

Specimens were collected from leaf litter and humus samples
in all major landmasses where Cyphophthalmi have been
reported except for the Mediterranean islands of Corsica and
Sardinia, where a field trip in October 2005 by G.G. failed to
provide any of the two known Parasiro species, and Madagas-
car, where large surveys of soil fauna by the California
Academy of Sciences have not yielded any specimens of the
monotypic genera Ankaratra and Manangotria (Shear &
Gruber, 1996). All collections for specimens included in our
analyses have been included in Fig. 1, generated with the GIS
software ARcMaP 9.1 (Rockware, 2005). The sampling repre-
sents all families except for the monogeneric family Ogoveidae,
and all the non-monotypic genera (except the ogoveid genus
Ogovea) plus several monotypic genera. Ogoveidae is known
from three species in West Africa (Giribet & Prieto, 2003;
Giribet, 2007b), but a trip to Bioko in July 2003 by G.G. did
not yield any Ogovea specimens, despite providing numerous
specimens of neogoveids.

Molecular methods

Molecular markers included two nuclear ribosomal genes
(complete 18S rRNA, and a 2.2 kb fragment of 28S rRNA), one
nuclear protein-encoding gene (histone H3), and two mitoch-
ondrial markers, one ribosomal (16S rRNA) and one protein-
encoding (cytochrome ¢ oxidase subunit I). These markers
have proven informative in many evolutionary studies
on arthropods, including harvestmen and other arachnids
(Hormiga et al., 2003; Prendini et al., 2003, 2005; Boyer et al.,
2005; Boyer & Giribet, 2007).

Total DNA was extracted from whole animals using Qiagen’s
DNEasy® Tissue Kit (Valencia, CA, USA), either by crushing
the individual or one appendage in the lysis buffer or by
incubating an intact animal or appendage in lysis buffer
overnight, then removing the specimen before proceeding with
the rest of the manufacturer’s extraction protocol, as described
by Boyer et al. (2005).

Purified genomic DNA was used as a template for PCR
amplification of the genes for 185 rRNA, 28S rRNA, 16S rRNA,
cytochrome ¢ oxidase subunit I (COI hereafter) and histone
H3. The complete 18S rRNA (c. 1.8 kb) was amplified in three
overlapping fragments of c¢. 900 bp each, using primer pairs
1F-5R, 3F-18Sbi and 18Sa2.0-9R (Giribet et al., 1996; Whiting
et al., 1997). An additional primer pair internal to 1F-5R was
used for sequencing, 4R (Giribet et al, 1996). The first
¢. 2200 bp of 28S rRNA were amplified using the primer sets
28SD1F/28Srd1a—28Sb (Whiting et al., 1997; Park & O Foighil,
2000; Edgecombe & Giribet, 2006), 285a—28Srd5b (Whiting
et al., 1997; Schwendinger & Giribet, 2005) and 28S54.8a—

2072

28S7bi (Schwendinger & Giribet, 2005). Sequencing of the 28S
rRNA gene was performed with those primers and some
additional internal primers: 28Sa (Whiting et al., 1997) and
28Srd4b (Edgecombe & Giribet, 2006). 16S rRNA was
amplified and sequenced using the primer pair 16Sar—16Sb
(Xiong & Kocher, 1991; Edgecombe et al., 2002). COI was
amplified and sequenced using the primer pair LCO1490—
HCO2198 (Folmer et al., 1994). The complete coding region
of histone H3 was amplified and sequenced using primer pair
H3aF-H3aR (Colgan et al., 1998).

Polymerase chain reactions (PCR) (50 pL) included 4 pL of
template DNA, 1 pum of each primer, 200 um of dinucleotide-
triphosphates (dANTPs; Invitrogen), 1x PCR buffer containing
1.5 mM MgCl, (Applied Biosystems, Branchburg, NJ, USA)
and 1.25 units of AmpliTaq DNA polymerase (Applied
Biosystems). The PCR reactions were carried out using a
GeneAmp PCR System 9700 thermal cycler, and involved an
initial denaturation step (5 min at 95°C) followed by 35 cycles
including denaturation at 95°C for 30 s, annealing (ranging
from 42 to 49°C) for 30 s and extension at 72°C for 1 min,
with a final extension step at 72°C for 10 min.

The double-stranded PCR products were visualized by
agarose gel electrophoresis (1% agarose), and purified using
Qiagen QIAQuick spin columns. The purified PCR products
were sequenced directly; each sequence reaction contained a
total volume of 10 pL including 2 pL of the PCR product,
irrespective of PCR yield, 1 pm of one of the PCR primer pairs,
1 uL of ABI BigDye™ 5x sequencing buffer and 0.5 uL of ABI
Big Dye™ Terminator v3.0 (Applied Biosystems). The
sequence reactions, performed using the thermal cycler des-
cribed above, involved an initial denaturation step for 3 min at
95°C, and 25 cycles (95°C for 10 s, 50°C for 5s, 60°C for
4 min). The BigDye-labelled PCR products were cleaned with
AGTC® gel filtration cartridges or plates (Edge BioSystems,
Galthesburg, MD, USA). The sequence reaction products were
then analysed using an ABI Prism 3100 or 3730 genetic analyser.

Chromatograms obtained from the automatic sequencer
were read and ‘contig sequences’ (assembled sequences) were
assembled using the sequence editing software SEQUENCHER ™
4.7 (Gene Codes Corporation, Am Arbor, MI, USA). Sequence
data were edited in MacGDE 2.2 (Linton, 2005). All new
sequences have been deposited in GenBank under accession
numbers DQ825507-DQ825650, EF108574-EF108596 and
EF028095-EF028096 (Table 1).

Phylogenetic analysis

Data analyses were based on a direct optimization approach
using parsimony (Wheeler, 1996) and maximum likelihood
(Wheeler, 2006) as optimality criteria. DNA sequence data
were analysed under the dynamic regime of direct optimiza-
tion (Wheeler, 1996) in the computer package poy v.3.0.11
(Wheeler et al., 2004). Tree searches were conducted by a
combination of random addition sequences with subtree
pruning and regrafting (SPR) and tree bisection and recon-
nection (TBR) branch swapping followed by multiple rounds
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of tree fusing (Goloboff, 1999, 2002) on a small 50-processor
cluster at Harvard University (darwin.oeb.harvard.edu).

For parsimony we undertook a sensitivity analysis of 10
parameter sets varying the relative contributions of indels and
base transformations (Wheeler, 1995), and used an index of
congruence for selecting a favoured parameter set, represented
in Table 2. Our sensitivity analysis included a parameter set,
designated 3221, which some argue represents a philosophical
equivalent to unweighted parsimony (De Laet, 2005).

Nodal support was estimated via jackknifing with a
probability of deletion of e~ ! (Farris et al., 1996; Farris, 1997).
The data were analysed in combination and for each
independent partition under different analytical parameter
sets, in order to perform a sensitivity analysis (Wheeler, 1995;
Giribet, 2003). The optimal parameter set was used for
generating an implied alignment (Wheeler, 2003; Giribet,
2005), which was later used for estimating the divergence times
in r8s v.1.71 (Sanderson, 2006).

Wealso performed a maximum likelihood analysis to evaluate
the effect of models on the phylogeny of Cyphophthalmi and
therefore on the biogeographical implications. For maximum
likelihood we used a model of sequence evolution equivalent to
GTR + indels with corrections for a discrete gamma distribution
(T') and a proportion of invariant sites (I), as selected in
Modeltest v.3.7 (Posada, 2005) under the Akaike information
criterion (Posada & Buckley, 2004). As a starting point we used
the same pool of trees used for the parsimony tree fusing analysis
and proceeded to tree fusing using the likelihood criterion.

Estimating divergence times

The ages of several clades were estimated using a standard
likelihood method, assuming a molecular clock, as implemen-
ted in the program r8s 1.71 (Sanderson, 1997, 2006). This
method requires at least one node of fixed age within the tree.
Other ages assigned to clades may be entered as constraints on
either maximum or minimum age. Only one fossil cyphoph-
thalmid is known, from the Bitterfeld amber in Germany,
dated at between 35 and 22 Ma (Dunlop & Giribet, 2003).
Morphologically, this specimen is a member of the Cyphoph-
thalmus + Paramiopsalis + Siro clade. Given the clear ingroup
position of this species and its uncertain age, we did not use it as
a constraint. Dates were assigned to clades based on biogeo-
graphical vicariance events, such as the opening of the
Mascarene basin separating Sri Lanka from Madagascar 88—
84 Ma. In this case, a minimum age of 84 Ma was assigned to
the clade of animals from Sri Lanka. Other dates employed in
this analysis include the rifting of Gondwana and Laurasia
165 Ma, assigned to the base of the clade including Paragovia
and Metasiro, and the initial break-up of Gondwana (the rifting
of Madagascar + Greater India from Africa 120 Ma; Sanmartin,
2002) assigned to the base of Pettalidae. Using these three dates,
we ran a series of analyses, where in each iteration the age of one
clade was fixed, leaving the other two dates set as minimum
clade ages. We also ran analyses using those fixed dates only
without additional constraints (see Table 4).

2076

RESULTS

Phylogenetic analyses

For the parsimony direct optimization analyses, parameter set
221 minimized overall incongruence among partitions and was
thus selected as the ‘optimal’ parameter set for these data
(Table 2). After two rounds of tree fusing, the analyses found
50 shortest trees of 27,254 weighted steps. The strict consensus
of the 50 trees found under the optimal parameter set is shown
in Figure 2. Families have been colour-coded and jackknife
values higher than 50% are plotted on each node. This tree
shows monophyly of Cyphophthalmi, as well as that of the
families Pettalidae (red, clade a), Troglosironidae (purple),
Neogoveidae (green) and Stylocellidae (blue, clade c). On
the contrary, the family Sironidae (orange) appears to form
three independent clades, one containing the genera Siro,
Paramiopsalis and Cyphophthalmus (clade d), and two clades
for Suzukielus (a monotypic genus from Japan) and Parasiro
(a genus endemic to the western Mediterranean). This tree
also shows high geographical structure within the families
Pettalidae, Sironidae and Neogoveidae and illustrates poor
resolution within Stylocellidae.

A maximum likelihood tree, based on the ribosomal data
only, had a —-log L = 25737.65 and it shows an alternative
resolution at the base of the tree, with stylocellids as the sister
group to all other cyphophthalmids, followed by pettalids
(fig. 3). This implies that the presence of eyes is a plesiomor-
phy of the suborder Cyphophthalmi, and not a derived feature
as previously thought (Fig. 3).

Table 2 Tree lengths for the different partitions analysed (18S,
18S rRNA; 288, 28S rRNA; COI, cytochrome ¢ oxidase subunit I;
16S, 16S rRNA; H3, histone H3; RIB, nuclear ribosomal data;
MOL, five loci combined) and congruence values (ILD) for the
combined analysis of the five molecular loci combined at different
parameter sets (left column).

185 28S COI 16S H3 RIB MOL ILD

111 596 3405 7301 4300 933 4032 16935 0.0236
121 828 4955 11135 6854 1268 5844 25633 0.0231
141 1271 7589 18106 10869 1907 9021 40838 0.0268
211 615 3793 7396 4738 933 4445 17890 0.0232
221 859 5639 11229 7655 1268 6559 27254 0.0222
241 1341 8976 18590 12823 1907 10449 44888 0.0279
411 647 4296 7412 5127 933 4967 18851 0.0231
421 919 6553 11264 8385 1268 7524 29139 0.0257
441 1461 10795 18706 14646 1907 12418 48778 0.0259
3221 1212 6799 14684 8800 1866 8082 34185 0.0241

The first numeral used in the parameter set (leftmost) column
corresponds to the ratio between indel/transversion and the following
two numbers correspond to the ratio between transversion/transition;
e.g. 111 is equal weights, 121 corresponds to an indel/transversion ratio
of 1 and a transversion/transition ratio of 2:1 — so indels have a cost of
2, transversions have a cost of 2 and transitions have a cost of 1. (For a
list of the specific step matrices that this involves see Giribet et al.,
2002; Appendix 4.) The optimal ILD value is indicated in italics.
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100 Equitius doriae

I_E Oncopus malayanus
Protolophus singularis

81 Megalopsalis sp.
Hesperonemastoma modestum
Dendrolasma parvulum
100 r— Parapurcellia silvicola - SAF
— Parapurcellia monticola - SAF
Austropurcellia forsteri - QLD
Austropurcellia arcticosa - QLD
Austropurcellia scoparia - QLD
Austropurcellia daviesae - QLD
Purcellia illustrans - SAF
Chileogovea oedlpus CHI
Chileogovea sp. - CH
Karripurcellia harveyl WAU
Karripurcellia harveyi - WAU
Neopurcellia salmoni - NZL @
Neopurcellia salmoni - NZL
Pettalus n.sp. DNA101282 - SRL @

Pettalus cf. brevicauda - SRL

Pettalus n.sp. DNA101285 - SRL
Pettalus n.sp. DNA101288 - SRL
Pettalus n.sp. DNA101574 - SRL
Pettalus n.sp. DNA101283 - SRL
Pettalus n.sp. DNA101286 - SRL
Pettalus n.sp. DNA101287- SRL

Aoraki crypta - NZL

Aoraki inerma - NZL

Aoraki denticulata - NZL

Aoraki calcarobtusa westlandica - NZL
Rakaia sorenseni sorenseni - NZL
Rakaia antipodiana - NZL

Rakaia magna australis - NZL

Rakaia solitaria - NZL

Rakaia florensis - NZL

Rakaia minutissima - NZL

Rakaia stewartiensis - NZL

Rakaia lindsayi - NZL

Siro rubens - EUR

Siro valleorum - EUR

Siro acaroides - USA

Siro n.sp., Calaveras - USA

Siro n.sp., Shasta - USA

Siro kamiakensis - USA

Siro exilis - USA

Siro n.sp., Washington - USA
Paramiopsalis ramulosus - EUR
Cyphophthalmus n.sp. , Bulgarial - EUR
Cyphophthalmus n.sp. , Bulgaria2 - EUR
Cyphophthalmus gjorgjevici - EUR
Cyphophthalmus ere - EUR
Cyphophthalmus eratoae - EUR
Cyphophthalmus zetae - EUR
Cyphophthalmus duricorius - EUR @
Cyphophthalmus rumijae - EUR
Cyphophthalmus martensi - EUR
Cyphophthalmus gordani - EUR
Cyphophthalmus teyrovskyi - EUR
Cyphophthalmus trebinjanum - EUR
Cyphophthalmus minutus - EUR
Cyphophthalmus ognjanovici - EUR
Suzukielus sauteri DNA101543 - JAP
Suzukielus sauteri DNA101550 - JAP
Troglosiro juberthiei - NCA

Troglosiro aelleni - NCA

Troglosiro ninqua - NCA @

Troglosiro longifossa - NCA
Neogoveidae sp. - SAM
Huitaca n.sp. , Boyaca - SAM
Neogovea n.sp. DNA101409 - SAM
Metagovea n.sp. - SAM
Neogovea n.sp. DNA101408 - SAM
Metasiro americanus - FLO
Paragovia n.sp. DNA101052 - WAF
Paragovia n.sp. DNA101057 - WAF
Paragovia sironoides DNA101059 - WAF
Paragovia sironoides DNA101061 - WAF
Paragovia cf. sironoides DNA100462 - WAF
Paragovia cf. sironoides DNA101053 - WAF
Paragovia cf. sironoides DNA101056 - WAF
Parasiro coiffaiti - EUR e
Fangensis leclerci - THA
Fangensis cavernarus - THA
Fangensis spelaeus - THA
Fangensis insulanus DNA100388 - THA
Fangensis insulanus DNA101063 - THA
Miopsalis n.sp. - BOR
Stylocellus n.sp. DNA100609 - SUM
Stylocellus lydekkeri - NGU
Stylocellus n. sp. DNA101469 - SUM
Stylocellus n.sp. DNA101517 - BOR
Stylocellus n.sp. DNA101468 - BOR
Stylocellus n.sp. DNA101519 - BOR
Stylocellus n.sp. DNA100870 - JAV
Stylocellus novaguinea - NGU
Stylocellus n.sp. DNA101489 - THA
Stylocellus n.sp. DNA101492 - THA
Stylocellus n.sp. DNA101486 - THA
Stylocellus n.sp. DNA100610 - SUM
Stylocellus n.sp. DNA101488 - THA
Stylocellus n.sp. DNA100240 - THA
Stylocellus n.sp. DNA101472 - SUM
Stylocellus n.sp. DNA101483 - THA
Stylocellus n.sp. DNA101514 - BOR
Stylocellus cf. sedgwicki - THA
T gty:oce”us n.sp. g“ﬁ1 01490 - ;ﬂﬁ
tylocellus n.sp. 101494 -
— 1 Stylocellus n.sp. DNA101500 - THA
i‘: Stylocellus n.sp. DNA101507 - LIN
Stylocellus n.sp. DNA101511 - SUL
Stylocellus n.sp. DNA101478 - SUM
_|E Stylocellus n.sp. DNA100608 - SUM
Stylocellus n.sp. DNA101474 - SUM

Figure 2 Phylogenetic relationships of cyphophthalmid specimens based on the strict consensus of 50 fundamental trees. Colours
correspond to those assigned to each family in Fig. 1. Representative specimens for each clade are illustrated in ventral view; black ellipses
are drawn to scale to reflect size differences. Numbers on branches indicate jackknife support values. Landmass abbreviations are:

BOR, Borneo; CHI, Chile; EUR, Europe; FLO, Florida; JAP, Japan; JAV, Java; LIN, Lingga Archipelago; NCA, New Caledonia; NGU,
New Guinea; NZL, New Zealand; QLD, Queensland; SAF, South Africa; SAM, northern South America; SRL, Sri Lanka; SUL, Sulawesi;
SUM, Sumatra; THA, Thailand; USA, United States of America; WAF, West Africa; WAU, Western Australia.
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Oncopus malayanus
Equitius doriae
Protolophus singularis
Megalopsalis sp.
Dendrolasma parvulum
Hesperonemastoma modestum
Fangensis leclerci - THA
Fangensis spelaeus - THA
Fangensis cavernarus - THA
Fangensis insulanus DNA101063 - THA
Fangensis insulanus DNA100388 - THA
Stylocellus n.sp. DNA101500 - THA
Stylocellus n.sp. DNA101494 - THA
Miopsalis n.sp. DNA101513 - BOR
Stylocellus n.sp. DNA101519 - BOR
Stylocellus n.sp. DNA101468 - BOR
Stylocellus n.sp. DNA101517 - BOR
Stylocellus n.sp. DNA101469 - SUM
Stylocellus n.sp. DNA101507 - LIN
Stylocellus n.sp. DNA101472 - SUM
Stylocellus n.sp. DNA100610 - SUM
Stylocellus n.sp. DNA100609 - SUM
Stylocellus lydekkeri - NGU
Stylocellus n.sp. DNA101486 - THA
Stylocellus n.sp. DNA101514 - BOR
Stylocellus n.sp. DNA101488 - THA
Stylocellus n.sp. DNA101483 - THA
Stylocellus n.sp. DNA100240 - THA
Stylocellus n.sp. DNA101478 - SUM
Stylocellus n.sp. DNA101474 - SUM
Stylocellus n.sp. DNA100608 - SUM
Stylocellus n.sp. DNA101489 - THA
Stylocellus n.sp. DNA101490 - THA
Stylocellus n.sp. DNA100870 - JAV
Stylocellus n.sp. DNA101492 - THA
Stylocellus cf. sedgwicki - THA
Stylocellus novaguinea - NGU
— Stylocellus n.sp. DNA101511 - SUL
— Pettalus n.sp. DNA101282 - SRL
Pettalus n.sp. DNA101283 - SRL
Pettalus n.sp. DNA101287 - SRL
Pettalus n.sp. DNA101286 - SRL
Pettalus n.sp. DNA101574 - SRL
(a) Pettalus n.sp. DNA101288 - SRL
Pettalus n.sp. DNA101285 - SRL
Pettalus cf. brevicauda - SRL
Purcellia illustrans - SAF
Parapurcellia monticola - SAF
Parapurcellia silvicola - SAF
Chileogovea oedipus - CHI
Chileogovea sp. - CHI
Neopurcellia salmoni - NZL
Neopurcellia salmoni - NZL
Aoraki calcarobtusa westlandica - NZL
Aoraki denticulata - NZL
Aoraki inerma - NZL
Aoraki crypta - NZL
Austropurcellia scoparia - QLD
Austropurcellia daviesae - QLD
Austropurcellia arcticosa - QLD
Austropurcellia forsteri - QLD
Karripurcellia harveyi - WAU
Karripurcellia harveyi - WAU
Rakaia magna australis - NZL
Rakaia solitaria - NZL
Rakaia sorenseni sorenseni - NZL
Rakaia antipodiana - NZL
Rakaia lindsayi - NZL
Rakaia stewartiensis - NZL
Rakaia minutissima - NZL
Rakaia florensis - NZL
Parasiro coiffaiti - EUR

Paragovia n.sp. DNA101052 - WAF
Paragovia n.sp. DNA101057 - WAF
Paragovia sironoides DNA101061 - WAF
Paragovia sironoides DNA101059 - WAF
Paragovia cf. sironoides DNA101056 - WAF
b Paragovia cf. sironoides DNA101053 - WAF
Paragovia cf. sironoides DNA100462 - WAF
Metasiro americanus - FLO
Huitaca n.sp., Boyaca - SAM
Neogovea n.sp. DNA101409 - SAM
Neogovea n.sp. DNA101408 - SAM
Metagovea n.sp. - SAM
] Neogoveidae sp. - SAM
Troglosiro ninqua - NCA
Troglosiro longifossa - NCA
Troglosiro juberthiei - NCA
Troglosiro aelleni - NCA
-
L
() é %

LE1ARY

Suzukielus sauteri DNA101543 - JAP
Suzukielus sauteri DNA101550 - JAP
Siro kamiakensis - USA

Siro n.sp. Washington - USA

Siro exilis - USA

Siro valleorum - EUR

Siro rubens - EUR

Siro n.sp., Calaveras - USA

Siro acaroides - USA

Siro n.sp., Shasta - USA
Paramiopsalis ramulosus - EUR
Cyphophthalmus rumijae - EUR
Cyphophthalmus n.sp. Bulgaria2 - EUR
Cyphophthalmus gjorgjevici - EUR
Cyphophthalmus n.sp. Bulgariai - EUR

Cyphophthalmus martensi - EUR

Cyphophthalmus eratoae - EUR Figure 3 Maximum likelihood tree based
Cyphophthalmus zetae - EUR .

Cyphophthalmus duricorius - EUR on the ribosomal data (-log L = 25737.65)
Cyphophthalmus ere - EUR . B .

Cyphophthalmus teyrovskyi - EUR showing an alternative resolution at the base
Cyphophthalmus trebinjanum - EUR i )
Cyphophthalmus gordani - EUR of the Cyphophthalmi tree. Colour coding
Cyphophthalmus minutus - EUR L .

Cyphophthalmus ognjanovici - EUR and abbreviations as in fig. 2.

Parsimony trees obtained under other parameter sets were Stylocellidae and Troglosironidae is found under all analytical
similar to the one illustrated in Fig. 1, as shown in the Navajo conditions, including the maximum likelihood analysis.
rug (sensitivity plot) (Fig. 4). Monophyly of Pettalidae, Sironidae is monophyletic under several parameter sets when
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Pettalidae
1:4 3221 ML

11 1:2

11

2:1

4:1

Neogoveidae
1:1 1:2 1:4 3221

Figure 4 Navajo rugs illustrating the mo-
nophyly (black square) or non-monophyly
(white square) for selected clades under the
explored parameter sets and maximum like-
lihood (ML) analyses. Ratios represent the
weighting scheme of transversion:transition
costs (rows) and transversion:gap costs (col-
umns). 3221 represents a weighting scheme
that has been argued to be philosophically
equivalent to unweighted parsimony.

to all others

1:1 1:2

1:1

2:1

4:1

the Mediterranean genus Parasiro is excluded (Fig. 4); this
includes the maximum likelihood analysis as well as several
parameter sets for the parsimony analysis, but not under the
optimal parameter set (Fig. 2). With the exception of Stylocel-
lidae — which is in urgent need of taxonomic evaluation — all the
genera of other families included in the analyses are mono-
phyletic.

Biogeography

The combined analysis of all genes using different phylogenetic
approaches shows monophyly of four groups of species, each
occurring in a major biogeographical region of the globe.
Simplified area cladograms reflecting the biogeographical
hypotheses implied by Figs 2—3 are provided in Fig. 5. Three
of these regions are supported in virtually all analyses
including the independent analysis of each gene partition:
(1) a temperate (southern; circum-Antarctic) Gondwanan
clade, containing all members of the family Pettalidae, (2) a
clade uniting the members from tropical (northern) Gondw-
ana (the Neotropical and Afrotropical family Neogoveidae),

Pettalidae sister

1:4 3221

Stylocellidae Sironidae minus Parasiro
1:2 1:4 3221 ML 1:2 1:4 3221 ML

|

Troglosironidae Neogoveidae + Trolgosironidae
ML 1:1 1:2 1:4 3221 ML 1:1 1:2 1:4 3221 ML

Stylocellidae sister
to all others

ML 1:1 1:2 1:4 3221 ML

RN

2:1

4:1

south-eastern USA (the monotypic genus Metasiro) and New
Caledonia (the family Troglosironidae), and (3) a Southeast
Asian clade, comprising the family Stylocellidae (Figs 2—4). A
fourth clade (4) contains all Laurasian species from North
America and Europe (family Sironidae) except two unusual
Laurasian genera, the monotypic Suzukielus from Japan and
Parasiro from the Western Mediterranean (Figs. 2, 5). The four
groups will be referred to hereafter as: (1) temperate
Gondwanan (Pettalidae), (2) tropical Gondwanan + New
Caledonia (Neogoveidae + Troglosironidae), (3) Southeast
Asian (Stylocellidae) and (4) Laurasian (Sironidae).

Date estimates

Results for the age estimates are shown in Table 3. The
divergence time estimates suggest that the earliest existence of
Cyphophthalmi can be dated between 174 and 312 Ma.
Although this age is younger than would be expected phylo-
genetically — the sister group of Cyphophthalmi was already
present in the Devonian (Dunlop et al., 2003, 2004 (for 2003))
— it places the most recent common ancestor to extant

Figure 5 Area cladogram summarizing the

hypotheses presented in Fig. 2 (a, hypothesis

1) and Fig. 3 (b, hypothesis 2).

Journal of Biogeography 34, 2070-2085

(a) hypothesis 1 (b) hypothesis 2

Temperate Gondwana SE Asia
Nearctic + Europe Temperate Gondwana
Japan Nearctic + Europe
Florida Japan

Tropical W Africa SW Europe
N South America Tropical W Africa
New Caledonia Florida
SW Europe

SE Asia

N South America

New Caledonia
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Table 3 Estimated divergence times.

Troglo+ SAm
Fixed age Cypho Stylo Neo Troglo Neo MPARA Neo PET SL
PET = 120 + 253 121 195 40 179 165 147 84
constraints
PET = 120 174 83 124 28 109 92 91 57
MPARA = 165 + 312 148 221 49 195 163 215 101
constraints
MPARA = 165 311 148 221 49 195 163 214 101
SL = 84 + 296 141 213 47 190 165 159 201
constraints
SL = 84 259 123 184 41 162 137 136 178

PET = Pettalidae; SL = Sri Lanka (Pettalus); MPARA = Metasiro + Paragovia; Cypho = Cyph-
ophthalmi; Stylo = Stylocellidae; Troglo+Neo = Troglosironidae+Neogoveidae; Troglo = Trog-
losironidae; Neo = Neogoveidae; Meta+Para = Metasiro+Paragovia; SAm Neo = South American

Neogoveidae.

The left column indicates the fixed ages in Ma for different nodes in the tree, based on dates of

biogeographical vicariance events. The resulting ages when fixing the age of a given node and

using the other dates as minimum ages (+ constraints), or fixing the age of a node without using

any other dates as calibration points, are shown in the other columns.

Cyphophthalmi in the Jurassic to Carboniferous, still prior to
the break-up of Pangaea. The estimated age for the family
Pettalidae is 178-215 Ma, in the Jurassic/Triassic. The split
between the families Troglosironidae and Neogoveidae is
estimated at 124-221 Ma. Diversification within Neogoveidae
occurred at 109-195 Ma, in the Cretaceous/Jurassic, whereas
diversification within Troglosironidae is Tertiary, dated at only
28—49 Ma.

DISCUSSION

Relationships among the four major clades suggested by
different phylogenetic methods vary little and allow us to draw
important conclusions about the biogeography and morphol-
ogy of ancient Cyphophthalmi. Parsimony analysis recovered
the temperate Gondwanan clade at the base of the cyphoph-
thalmid radiation, followed by the Laurasian clade, the Japanese
Suzukielus, the tropical Gondwanan + New Caledonia clade,
and the western Mediterranean Parasiro as sister to the
Southeast Asian clade (Figs 2 & 5). The maximum likelihood
analysis suggested a hypothesis with the Southeast Asian clade as
sister to the other cyphophthalmids, with the temperate
Gondwanan + New Caledonia clade coming next (Figs 3 &
5). Either resolution suggests that the first Cyphophthalmi
offshoot inhabited the Gondwanan portion of Pangaea because
stylocellids, although currently in Southeast Asia, inhabit
terranes that rifted off from north-eastern Gondwana as
separate blocks and accreted to Eurasia in the Mesozoic during
the closure of the Palaeotethys Ocean (Rogers & Santosh, 2004).
Both hypotheses also suggest that the presence of eyes in
Cyphophthalmi, now recognized in most members of the
families Stylocellidae and Pettalidae (Sharma & Giribet, 2006;
Giribet & Boyer, 2007), but not in those of other families,
constitutes a primitive character of the group and not, as was
previously thought, a secondarily derived character of stylocel-
lids (e.g., Shear, 1980; Giribet & Boyer, 2002).
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The temperate Gondwanan clade

We consistently find monophyly of the temperate Gondwanan
family Pettalidae, which currently occurs in Chile, South Africa,
Madagascar, Sri Lanka, Western Australia, Queensland and New
Zealand. The estimated age of this family is 178-215 Ma, older
than the minimum age assigned to the node, indicating
diversification within the family prior to the break-up of the
supercontinent. This family represents a distinctive example of a
Gondwanan group whose distribution may indeed be explained
solely by vicariance. Phylogenetic and palacontological studies
have demonstrated that the textbook example of Gondwanan
vicariance, the southern beech tree genus Nothofagus, actually
has a history which includes several major trans-oceanic
dispersal events (Cook & Crisp, 2005). A notable illustration
of the importance of vicariance in Cyphophthalmi is that all Sri
Lankan species are more closely related to other temperate
Gondwanan Cyphophthalmi than to members of the Southeast
Asian family Stylocellidae, despite the present-day proximity of
Sri Lanka to Thailand, Malaysia and Indonesia. The Indian
subcontinent rifted from Australia and Africa some 150—
160 Ma and collided with Eurasia about 50 Ma (Sanmartin &
Ronquist, 2004). Therefore, the close relationship of Sri Lankan
Pettalidae to the species from New Zealand, Australia, South
Africa and Chile must be ancient indeed.

The Southeast Asian clade

One of the hottest — and perhaps most complicated — topics in
biogeography is the origin of the Malay Archipelago (Hall,
2002). The relationship of the Southeast Asian clade to other
Cyphophthalmi is not resolved with high support, but a
resolution obtained in some analyses indicates a sister
relationship with the western Mediterranean Parasiro (Fig. 5a).
Alternatively, other analyses place stylocellids more basally in
the tree, in agreement with our hypothesis that they drifted
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northwards and diversified in the Sibumasu terrane (Fig. 5b).
The internal relationships of Stylocellidae support a number of
postulates about the biogeographical history of the islands in
the Malay Archipelago.

Our phylogeny, especially the finding of the Thai genus
Fangensis as a grade sister to all other species in the family, may
imply a southward pattern of cladogenesis from the Thai—
Malay Peninsula to the Malay Archipelago, a result that is
consistent with postulated historical land connections among
the components of Sundaland (Thai-Malay Peninsula, Borneo,
Sumatra and Java). The early origin of western Sulawesi as
part of Borneo and the submersion of eastern Sulawesi before
its collision with western Sulawesi explain the presence of
Stylocellidae and the absence of temperate Gondwanan
Pettalidae throughout that island (Moss & Wilson, 1998).
Consistent with our inferences about the limited trans-oceanic
dispersal abilities of these arachnids, the only island in the
Philippines from where such animals are known is Palawan,
which is also the only Philippine island of continental origin,
the rest being volcanic. However, the presence of stylocellid
species in the western part of New Guinea can hardly be
explained by vicariance, as it seems that New Guinea has never
been in contact with Sulawesi. If this were confirmed, it would
constitute the first documented case of trans-oceanic dispersal
in Cyphophthalmi (Clouse & Giribet, 2007).

The tropical Gondwanan + New Caledonia clade

Morphologically, the members of the tropical Gondwanan
clade (Neogoveidae) + the New Caledonian Troglosironidae
share striking and unique characters, such as the row of teeth
on the claw of the second pair of walking legs (Fig. 6a,b), not

found in the members of other families (Fig. 6¢,d), and special
secretory gland pores in the ventral abdominal region of males.
These characters have previously been used to suggest a close
relationship between Troglosironidae and Neogoveidae in a
cladistic analysis of morphological data (Giribet & Boyer,
2002). The support and stability obtained in our molecular
analysis further corroborates this result.

Within Neogoveidae, species from West Africa and South
America each form monophyletic groups in most analyses,
with the unusual North American species Metasiro americanus
resolved as the sister group to the West African species. Found
in south-eastern USA, M. americanus was recently transferred
from the Laurasian family Sironidae to Neogoveidae (Giribet,
2007a) as it possesses the distinctive modified second claw
found in Neogoveidae and Troglosironidae. Biogeographically,
the close relationship of Metasiro to West African Neogoveidae
is explained by an ancient vicariance event. In the last 35 years
geologists have amassed substantial evidence from palaeonto-
logical analyses, comparisons of radiometric dates, palaeo-
magnetic data and stratigraphic correlations (Rowley &
Pindell, 1989; Randazzo & Jones, 1997) demonstrating that
Florida’s basement rocks were originally a part of the West
African continental margin near Senegal. This block attached
to North America during the formation of Pangaea in the
Permo-Carboniferous, at which time south-eastern North
America was in close contact with both West Africa and
northern South America. The block rifted from Gondwana
when the seafloor spread between Africa and North America
180-165 Ma and remained attached to North America, thereby
forming present-day Florida (Sanmartin, 2002).

A salient outcome of this study is the relationship of New
Caledonia to Tropical Gondwana, which has never been

Figure 6 Significant morphological characters employed in cyphophthalmid taxonomy. (a)—(d) Second walking leg claw showing
differences in dentition: (a) Huitaca sp. Santander (Neogoveidae), scale bar 50 pm; (b) Troglosiro longifossa (Troglosironidae), scale bar
20 pmy; (c) Rakaia magna australis (Pettalidae), scale bar 50 pm; (d) Parasiro minor (Sironidae), scale bar 10 pm. (e)—(h) Anal region
showing the different modifications of anal plate, sternites 8 and 9 and tergite IX (scale bars 100 um): (e) Suzukielus sauteri (Sironidae);
(f) Pettalus cf. brevicauda (Pettalidae); (g) Rakaia solitaria (Pettalidae); (h) Siro valleorum (Sironidae).

Journal of Biogeography 34, 2070-2085
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proposed based on geological or biological data. This is the
most stable of the inter-family relationships proposed by
our analyses and had been previously suggested based on
morphology (Giribet & Boyer, 2002), although alternative
views exist (Shear, 1993). The present-day distributions of
Troglosironidae on New Caledonia and Neogoveidae in
tropical Gondwana may constitute a challenge to our vicari-
ance-based model in so far as New Caledonia and the tropical
Gondwanan landmasses are hardly contiguous. However,
dispersal to New Caledonia from West Africa or tropical
South America (or vice versa) is unlikely because the split
between Troglosironidae and Neogoveidae is estimated from
our analysis to have taken place 124-221 Ma, preceding the
break-up of Gondwana. Diversification of Neogoveidae was
around 109-195 Ma, whereas it occurred much more recently
within Troglosironidae, dated at only 28-49 Ma, indicating
possible diversification after a catastrophic event (Table 3).

An alternative scenario consistent with the ancient split
between the families invokes a pan-Gondwanan distribution of
this group. Such a pan-Gondwanan distribution is conceivable
given that New Caledonia has been interpreted as an ancient
island, home to such relictual groups as Amborella, the sister
genus to all other flowering plants (Mathews & Donoghue,
1999). Moreover, the extensive former distribution of Pettal-
idae on Gondwana indicates that a similar distribution is
possible for tropical Gondwanan Cyphophthalmi. This hypo-
thesized pan-Gondwanan distribution of the tropical Gondw-
ana clade is disputable, given that such a distribution has not
been validated by other poorly dispersing taxa of Gondwanan
origin. In particular, the biota of New Caledonia is generally
related to Australia and New Zealand biogeographically
(Walley & Ross, 1991). Further studies of the New Caledonian
biota in a broad phylogenetic and biogeographical context may
shed light on this enigma.

The Laurasian clades

Our analyses consistently retrieve a Laurasian clade, including
species from North America and Europe in the family
Sironidae. Within this group, there are two main clades, the
trans-Atlantic genus Siro from western Europe and both coasts
of the USA, and a Mediterranean clade including Paramiopsalis
and Cyphophthalmus. However, the placement of the Japanese
genus Suzukielus and the Mediterranean genus Parasiro
requires further discussion. The position of the Japanese
species Suzukielus sauteri is unstable, as it groups with
Sironidae in some analyses and appears sister to the clade
formed by species from tropical Gondwana + Southeast Asia
in others. Morphologically, this monotypic genus is enigmatic,
with its taxonomically important anal region (Fig. 5e) resem-
bling that of animals from the temperate Gondwanan family
Pettalidae (Fig. 5f,g) rather than Laurasian Sironidae (Fig. 5h),
where sternites 8 and 9 and tergite IX fuse into a corona analis.
In fact, Suzukielus has defied monophyly of the family in
previous morphological cladistic analyses (Giribet & Boyer,
2002; De Bivort & Giribet, 2004).
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Parasiro is not closely related to any other sironid species
under any analysis. Parasiro currently includes three species on
both sides of the Pyrenees, on the Italian Peninsula and on the
islands of Corsica and Sardinia, and this genus has many
differences with respect to the other sironids (De Bivort &
Giribet, 2004) and may well require a new familial designation.

While some sironid species are doubtlessly the best-known
cyphophthalmids, the family also includes a number of poorly
known monotypic genera (Iberosiro, Odontosiro, Paramiopsalis,
Suzukielus, Tranteeva) that may require further study.

Concluding remarks

By studying a group of organisms with not only an ancient
origin, low vagility and restricted habitats but also a present
global distribution, we have been able to test biogeographical
hypotheses at a scale rarely attempted. Our results strongly
support the presence of a circum-Antarctic clade of formerly
temperate Gondwanan species, a clade restricted to tropical
Gondwana and a Southeast Asian clade that originated from a
series of early Gondwanan terranes that rifted off northwards
from the Devonian to the Triassic and accreted to tropical
Laurasia (Metcalfe & Irving, 1990). The latter clade subse-
quently diversified from north to south-east (Clouse & Giribet,
2007). The relationships among the Laurasian species remain
more obscure, although this may reflect real taxonomic
deficiencies, as had occurred previously with the genus
Metasiro, once considered a sironid because of its North
American distribution.
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